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Abstract. Eastern U.S. forests are witnessing an ecologically disruptive decline in one of the region’s
distinctive foundation tree species, the eastern hemlock (Tsuga canadenis). The exotic insect pests hemlock
woolly adelgid (Adelges tsugae, HWA) and elongate hemlock scale (Fiorinia externa) have greatly altered
many forest ecosystems previously dominated by this important evergreen conifer. The consequences for
ecosystem processes are far reaching because hemlock is often replaced by deciduous tree species, such as
black birch (Betula lenta), which have strongly divergent effects on forest floor microenvironments and
nutrient cycling. We took advantage of an accidental experiment initiated by patch-level timber harvesting
~30 yr ago to investigate how the removal of hemlock, and its replacement by deciduous trees, has affected
leaf litter characteristics, soil organic layer mass, C:N content, and soil respiration rates. We also contrasted
these areas to nearby forest plots where deciduous B. lenta has been dominant for almost a century. The
inclusion of healthy, intact hemlock stands in the design, and the close proximity of plots, allowed for a
powerful space-for-time approach to detect ecosystem changes that are likely to occur across the broader
landscape with HWA-induced hemlock loss in coming years. Three years of data collection from a series of
plots in hemlock, young birch, and mature birch stands revealed dramatic differences in soil carbon pools
and cycling. Between forests dominated by hemlock vs. mature birch, we saw a significant decrease in soil
organic layer mass and in the C:N of the remaining organic material. Although hemlock and young birch
stands showed no significant differences in soil respiration rates, mature birch stands had significantly
higher soil respiration rates throughout the entire growing season, regardless of wet or dry years. Our
results suggest that the carbon pool in the forest floor is likely to mobilize through greater decomposition
with a 6.89 decline in soil organic layer C storage as hemlocks are replaced by deciduous trees, leading to
a potential net release of ~4.5 tons C per hectare. We conclude that the ramifications of this change for
carbon storage could be extensive, but may take decades to manifest.
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INTRODUCTION

Biotic disturbances are having major effects on
forest ecosystems across the United States and
Canada (Ellison et al. 2005, Lovett et al. 2006,
Hicke et al. 2012). The impacts of invasive pests
have been especially disruptive when these inva-
ders target dominant plant species that strongly

influence the structure and characteristics of their
local environment. Eastern hemlock (Tsuga
canadensis), a distinctive evergreen conifer, is con-
sidered a foundation species in the temperate
deciduous forests of the eastern United States, as
its presence structures avian communities (Ting-
ley et al. 2002), influences levels of diversity in
ant and benthic invertebrate stream communities,

 ❖ www.esajournals.org 1 August 2018 ❖ Volume 9(8) ❖ Article e02391

info:doi/10.1002/ecs2.2391
http://creativecommons.org/licenses/by/3.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fecs2.2391&domain=pdf&date_stamp=2018-08-16


and favors certain forest floor organisms such as
bryophytes and soil mesofauna, like mites and
collembolans (Snyder et al. 2002, Ellison et al.
2005, Zukswert et al. 2014, Siddig et al. 2016). In
addition to their influence on ecological commu-
nities and other species, foundation tree species
like hemlock affect ecosystem processes such as
decomposition, nutrient cycling, and carbon
sequestration (Ellison et al. 2005). Compared to
deciduous tree-dominated areas, hemlock stands
have lower light levels due to the dense, ever-
green canopy, and the forest floor tends to be
moister due to cooler conditions (Ellison et al.
2005). Hemlock stands dramatically influence for-
est floor structure and edaphic conditions, and
typically develop deep, acidic organic layers with
slow rates of decomposition and nutrient cycling
(Lovett et al. 2006).

Invasive insect pests are currently threatening
hemlock with decline and extirpation across much
of its range in the eastern United States, and the
species’ decline has the potential to produce pro-
found changes in ecosystem function (Orwig et al.
2002, Ellison et al. 2005). The hemlock woolly
adelgid (Adelges tsugae, HWA) is a xylem parench-
yma cell-feeding insect introduced to eastern
North America from southern Japan, where it had
co-evolved with native Japanese hemlocks (Havill
et al. 2006). Hemlock woolly adelgid was first
reported in Richmond, Virginia, USA, in the
1950s, and has since expanded its range into the
northeastern United States (McClure 1990, Orwig
and Foster 1998), appearing in nearly 90% of
stands in southern New England (Orwig et al.
2002). With HWA infestation, eastern hemlocks
experience high levels of foliar loss and tree mor-
tality in as little as 4–5 yr (Orwig and Foster 1998,
Lovett et al. 2006). The HWA infestation may
cause a systemic hypersensitive response in east-
ern hemlocks, resulting in elevated foliar hydro-
gen peroxide (H2O2) levels plant-wide and
ultimately tissue death (Radville et al. 2011).
HWA infestation also leads to a significant
increase in the formation of false rings, areas of
cells with thick cell walls that disrupt water flow
throughout the plant (Gonda-King et al. 2012).

In addition to HWA, hemlocks are also being
attacked by a second invasive insect, the elongate
hemlock scale (Fiorinia externa, EHS). This insect
co-occurs in many areas with HWA and is gener-
ally considered less of a threat to hemlock

(Gonda-King et al. 2012), although observations
suggest that high-density infestations may also
result in foliar loss (Mcclure 1980, Abell and Van
Driesche 2012). It is currently debated whether
EHS contributes to hemlock decline or, con-
versely, might mediate or lessen the effects of
HWA through competitive interactions (Preisser
and Elkinton 2008, Gomez et al. 2015). Regard-
less, the abundance and dominance of hemlock
in many eastern U.S. forests have already
declined substantially and the species is expected
to be lost from many areas in coming decades.
In New England, hemlock decline typically

leads to the conifer’s replacement by black birch
(Betula lenta), a deciduous tree species with sub-
stantially different effects on forest floor charac-
teristics (Orwig and Foster 1998, Cobb 2010,
Zukswert et al. 2014). Black birch often occurs as
an associate of hemlock in New England forests,
and birch’s abundant seed production and the
strong response of its seedlings to higher-light
environments, such as those generated by thin-
ning or dying hemlock, lead to its rapid growth
in declining hemlock stands (Orwig and Foster
1998, Catovsky and Bazzaz 2001). Hemlock-
dominated ecosystems are generally character-
ized as having low and slow N cycling due to the
tree’s low foliar and litter N, which results in
soils with low extractable N pools, and low rates
of potential net mineralization and nitrification
(Lovett et al. 2004, Cobb 2010). In contrast, net
mineralization, nitrification, and N turnover
increased in sites that experienced hemlock mor-
tality (Jenkins et al. 1999). These changes relate
in part to hemlock’s replacement by black birch,
as previous studies have found that birch litter
decomposes more rapidly than that of hemlock,
indicating marked differences in leaf litter qual-
ity (Cobb 2010, Raymer et al. 2013, Finzi et al.
2014). Finally, black birch biomass and soil have
also been found to have a significantly higher N
content than hemlock (Finzi et al. 2014). Overall,
the decline of hemlock and associated shift in
dominant tree species is likely to have broad
consequences for ecosystem function through
changes in nutrient cycling and edaphic condi-
tions (Ellison et al. 2005, Raymer et al. 2013,
Zukswert et al. 2014). Extensive damage to
hemlocks due to defoliation, combined with
reductions in water use, can lead to dramatic
reductions in gross primary productivity (Domec
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et al. 2013, Gomez et al. 2015). However, despite
major alterations in leaf litter and N cycling with
hemlock decline (Jenkins et al. 1999, Lovett et al.
2004, Cobb 2010, Orwig et al. 2013, Finzi et al.
2014), there has been surprisingly little evidence
to date of impacts on soil C efflux (Orwig et al.
2013, Raymer et al. 2013, Finzi et al. 2014).

In this study, we explore how soil C and N,
and soil CO2 fluxes, have been altered as a result
of forest conversion from evergreen hemlock to
deciduous black birch dominance. It has been
well established that the transition from hemlock
to birch stands results in short-term increases in
N cycling and decomposition (Jenkins et al.
1999, Cobb 2010, Orwig et al. 2013, Finzi et al.
2014). However, previous research has not
observed large or long-lasting effects on C
fluxes. The absence of clear evidence for C pool
changes might trace to the limited time spans of
the ecosystem conversions studied to date (e.g.,
a few years during and after natural hemlock
decline, or with recent experimental removal), or
the lack of comparisons between hemlock and
closely paired stands of mature deciduous trees.
In the present study, we take advantage of a
long-running accidental experiment in hemlock
decline by contrasting intact areas of mature
hemlock with embedded patches of young black
birch generated by logging ~30 yr ago in the late
1980s (Zukswert et al. 2014). These two forest
types are further compared to nearby deciduous
stands dominated by mature black birch on simi-
lar terrain and soils, where birch has been domi-
nant for almost a century. Our study differs from
previous work in that all of our hemlock and
black birch stands are in close proximity to each
other and were sampled for soil respiration on
the same day over multiple survey dates. We use
these three forest types as a space-for-time sub-
stitution to understand how ecosystem processes
are likely to be altered as hemlock forests are
replaced by birch stands across the broader land-
scape in coming decades. With a shift from hem-
lock- to deciduous tree-dominated ecosystems,
we predict that (1) mass of the soil organic layer
will decrease, (2) organic layer C:N will
decrease, and (3) soil respiration rates will
increase, resulting in higher rates of C cycling
and a substantial net mobilization of soil organic
carbon from former hemlock stands into the
atmosphere.

METHODS

Study site description
This study was conducted in a forested area at

Smith College’s Ada and Archibald MacLeish
Field Station, located in Whately, Massachusetts,
USA (42°27.320 N, 72°40.960 W), in central New
England (Fig. 1). The field station consists of
105 ha of largely secondary growth northern
hardwoods–hemlock–white pine forest (Zuk-
swert et al. 2014). Hemlock woolly adelgid and
EHS have been observed on hemlocks at the
MacLeish field station since 2009–2010, although
few trees have died due to the pests and most
trees retain healthy foliage. The MacLeish Field
Station is located near the northern edge of
HWA’s distribution, where cold winter condi-
tions appear to cause occasional dieback of HWA
populations in the region. The HWA infestation
in this area appears to be lower level and chronic
compared to the more severe outbreaks in war-
mer regions to the south. Finally, there is some
evidence that the presence of EHS discourages
HWA colonization of hemlock (Preisser and Elk-
inton 2008), possibly leading to hemlocks in cen-
tral New England declining at a slower pace
than observed elsewhere.
These forests developed on abandoned agricul-

tural land (mostly upland pasture) in the late 19th
and early 20th centuries. In the late 1980s, a com-
mercial selective logging harvest was conducted
on the property, in which over 1/3 of the total
lumber removed was hemlock (Zukswert et al.
2014). Forest gaps created by this logging event
led to the development of dense young stands of
~25- to 30-yr-old black birch embedded in a
matrix of mature northern hardwoods–hemlock
forest (Zukswert et al. 2014). The young birch
stands provide an example of potential forest con-
ditions following predicted hemlock decline, simi-
lar to the dense stands of young birch that have
developed in the wake of HWA-induced hemlock
mortality in southern New England (Orwig and
Foster 1998). Although these young birch stands
are not entirely free of hemlock leaf litter inputs
from nearby hemlock stands, they do represent
systems where hemlock inputs have declined sub-
stantially relative to the surrounding hemlock-
dominated forest. This accidental experiment
effectively allows a comparison of environmen-
tally matched plots of pre-hemlock decline forest
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and forests patches comparable to late-stage hem-
lock decline. In 2010, six research plots
(10 9 15 m) were established in these adjacent
young birch and mature hemlock forest patches.
In 2015, three additional plots were established in
nearby (~100–150 m east) mature birch forest
where no hemlock trees are present. Trees in the
two mature forest types (hemlock, black birch)
are ~80–100 yr in age based on tree core samples,
while those in the young birch plots are 25–30 yr
old (J. Bellemare, personal communication).

Characterization of basal area and leaf litter
inputs

Basal area was estimated for each 10 9 15 m
plot by measuring diameter at breast height
(dbh) of all trees and saplings >1.4 m in height.
We characterized each of the three forest types
by total basal area, %hemlock basal area, %black
birch, and %other deciduous species. Leaf litter
inputs were sampled in all plots to estimate mass
and tree species composition. Litter deposition
rate was based on collections from five mesh-
lined laundry baskets (0.55 9 0.39 m) per
10 9 15 m plot, maintained and monitored for a

full year. Litter included deciduous leaves, coni-
fer needles, twigs, bark, fruits, seeds, cones,
insect droppings, and insect bodies. Litter sam-
ples were parsed out for total leaf litter (g/m2)
and %hemlock needles vs. %black birch leaves
vs. other deciduous tree species. A subsample of
the leaf litter sorted to species was dried and pul-
verized for testing %C, %N, and C:N analysis at
the Cornell University Stable Isotope Laboratory
(COIL, Ithaca, New York, USA) using a Thermo
Finnigan Delta Plus mass spectrometer con-
nected to a NC2500 elemental analyzer (Carlo
Erba Instruments, Milan, Italy) for continuous
flow analysis of carbon and nitrogen.

Characterization of soil organic layer
During 2013–2015, forest floor soil organic

layer samples were collected to quantify differ-
ences between the three forest types in organic
layer mass and nutrient composition. For each
plot, a series of 10 randomly established
0.25 9 0.25 m subplots were sampled, from
which the soil organic layer was collected, oven-
dried, and weighed to determine forest floor dry
mass per unit area. This material was then

Fig. 1. Study area in western Massachusetts at Smith College’s MacLeish Field Station in the towns of Whately
and Conway. The locations of the three plot pairs in mature hemlock forest and young birch patches are indi-
cated by black circles, and the locations of three plots in mature birch forest are indicated by black diamonds.
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homogenized and sieved to <2 mm, from which
a subsample was drawn for testing %C, %N, and
C:N analysis at the Cornell University Stable
Isotope Laboratory (COIL).

Soil respiration
Using a closed-path infrared gas analyzer sys-

tem (LI-6400; LI-COR Inc., Lincoln, Nebraska,
USA), the rate of soil respiration was measured
every ~3–4 weeks throughout the growing season
from May to November in three consecutive years
(2015–2017). Three 10 cm diameter PVC (polyvi-
nyl chloride) soil collars per plot in each forest
type were installed during the summer of 2014. In
order to capture maximum CO2 efflux rates, three
measurements were made on each collar between
10 a.m. and 2 p.m. on sampling dates. Soil tem-
perature was measured in the area adjacent to
each soil collar. Additionally, volumetric water
content (VWC) measurements were made with a
soil moisture probe (HydroSense; Campbell Sci-
entific, Logan, Utah, USA) next to each soil collar
at a depth of 12 cm. We used mean soil respira-
tion rates on a given sampling date to calculate %
difference in soil respiration of each birch forest
type relative to hemlock conditions.

Statistical analysis
A nested ANOVA was used to analyze differ-

ences in the mean organic layer mass, mean car-
bon and nitrogen of the organic layer, mean leaf
litter characteristics, and mean carbon and nitro-
gen of the leaf litter between forest types. Addi-
tionally, Tukey’s honestly significant difference
(HSD) post hoc comparison and t tests were
made in order to distinguish significant differ-
ences between the individual forest types. A
nested repeated measures ANOVA was used to
test for significant differences in mean soil respi-
ration and VWC over time, forest type, and their
interaction. The assumptions of normality and
homogeneity of variance were met. Percent

differences in soil respiration rates over time
were not statistically analyzed as they were
calculated using mean soil respiration rates per
forest type on a given date. All analyses and
graphing were conducted in R version 3.3.3 (R
Core Team 2017).

RESULTS

Basal area and leaf litter inputs
Among the three forest types sampled, basal

area (Table 1) was highest in the hemlock plots
(mean, 45.9 m2/ha � 11.14 standard error [SE])
and mature black birch plots (34.52 m2/ha � 1.85
SE); as expected, the young birch forest type had
much lower basal area (14.06 m2/ha � 1.80),
reflecting loss of all mature trees to logging in
the 1980s. These differences in basal area were
not analyzed statistically, as replication was low
(n = 3 plots per forest type). The hemlock forest
type was indeed dominated by hemlock (58.9%
of basal area; Appendix S1: Fig. S1), but also
included deciduous species like black birch
(33.6%) and other deciduous trees (7.6%). Mature
birch plots were heavily dominated by black
birch (78.7% of basal area) and other deciduous
tree species (21.2%), with only a single stem of
hemlock sampled (0.2%). The young birch plots
were also dominated by sapling-stage black birch
(83.4%) and other deciduous tree species (16.6%),
with no hemlock present into the canopy, sub-
canopy, or ground layer.
We used a nested ANOVA to test for differ-

ences in total litter inputs between the three forest
types (Table 1). Mean total leaf litter was signifi-
cantly different by forest type (Appendix S1:
Table S1; P < 0.0001), with mature birch plots
having the highest mean total leaf litter inputs
(412.2 g/m2 � 11.44 SE), followed by hemlock
(320.0 g/m2 � 10.83 SE), then by young birch
(275.5 g/m2 � 10.30 SE). A Tukey’s HSD post hoc
test revealed that mature birch litter inputs were

Table 1. Mean basal area (m2/ha), mean total leaf litter (g/m2), mean % hemlock leaf litter, and mean % birch leaf
litter and �1 standard error for each forest type.

Forest Basal area Total leaf litter % Hemlock leaf litter % Birch leaf litter

Hemlock 45.90 � 11.14 320.0 � 10.83 40.40 � 1.78 29.85 � 2.07
Young birch 14.06 � 1.80 275.5 � 10.30 12.78 � 1.52 58.88 � 3.04
Mature birch 34.52 � 1.85 412.2 � 11.44 0.07 � 0.03 63.90 � 2.16
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significantly higher than hemlock (P < 0.0001)
and young birch (P < 0.0001). Additionally, hem-
lock inputs were significantly higher than young
birch (P = 0.01).

We characterized the leaf litter inputs by tally-
ing the dry mass percentage attributed to hemlock
needles vs. black birch leaves and other decidu-
ous litter (Table 1). The hemlock forest type con-
tained 40.4% � 1.8 SE hemlock needles and
29.9% � 2.1 SE birch leaves, with the remaining
leaf litter represented by a mix of deciduous spe-
cies (e.g., Quercus rubra and Acer rubrum). The
mature birch forest type included only
0.1% � 0.03 SE hemlock needles (drifting in from
outside-plot trees) and 63.9% � 2.2 SE black birch
leaves; the remainder of litter was a mix of other
deciduous tree species (e.g., Fagus grandifolia and
A. rubrum). Finally, the young birch forest type
included 12.8% � 1.5 SE hemlock needles, drift-
ing in from hemlock trees adjacent to the plots,
and 58.9% � 3.0 SE black birch leaves, with the
remainder being other deciduous tree leaves.

We analyzed sorted leaf litter samples for C
and N content to determine the quality of inputs
to the soil organic layer from the two dominant
tree species (hemlock, black birch). Specifically,
we used a Welch two-sample t test to distinguish
mean differences of %C (Fig. 2a), %N (Fig. 2b),
and C:N (Fig. 2c) in samples of fallen hemlock
needles compared to birch leaves. Hemlock nee-
dles had significantly (t17.89 = �3.69, P = 0.002)
higher mean %C (54.26 � 0.25 SE) compared to
fallen birch leaves (52.88 � 0.27 SE). Contrast-
ingly, birch leaves had significantly (t15.55 = 2.77,
P = 0.01) higher mean %N (0.87 � 0.02 SE) com-
pared to hemlock needles (0.79 � 0.02 SE). These
differences led to divergent C:N ratios between
the two tree species: hemlock shed needles with
significantly (t17.47 = �3.49, P = 0.003) higher
mean C:N (80.11 � 1.57) than seen in fallen birch
leaves (71.55 � 1.88 SE).

Soil organic layer characteristics
A nested ANOVA showed a significant differ-

ence in mean organic layer mass (Fig. 3;
Appendix S1: Table S2) between the three forest
types (P < 0.0001). Organic layer mass was high-
est in hemlock plots (1089.89 g/m2 � 40.70 SE),
followed by young birch (611.68 g/m2 � 59.48

Fig. 2. Mean %C (a), %N (b), and C:N (c) in leaf lit-
ter of hemlock and black birch. Error bars are � 1
standard error. An asterisk indicates significant differ-
ences between forest types.

Fig. 3. Mean soil organic layer (g/m2) for hemlock,
young birch, and mature birch forest types. Error bars
are � 1 standard error. Letters designate forests that
were significantly different via post hoc Tukey’s hon-
estly significant difference analysis.
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SE), with the lowest organic layer mass seen in
the mature birch plots (216.53 g/m2 � 11.41 SE).
A Tukey’s HSD post hoc test revealed all sites
were significantly different from one another
with hemlock (P < 0.0001) >young birch (P <
0.0001) >mature birch (P < 0.0001).

We also analyzed %C, %N, and C:N of the soil
organic layer for each forest type using a nested
ANOVA (Appendix S1: Table S3–S5, respectively).
Mean %C (Fig. 4a) was significantly different by
forest type (P < 0.0001). Hemlock had the highest
%C (43.80 � 1.25 SE), followed by young birch
(42.13 � 0.95 SE), then by mature birch (32.63 �
1.30 SE). A Tukey’s HSD post hoc test revealed that
hemlock and young birch were not significantly
different, while mature birch had significantly
lower %C in its organic layer compared to young
birch (P < 0.0001) and hemlock (P < 0.0001). Mean
%N (Fig. 4b) was also significantly different by for-
est type (P = 0.03). A Tukey’s HSD post hoc test
revealed that %N was significantly different only

between young birch and mature birch (P = 0.03).
Analyses showed that mean organic layer C:N
(Fig. 4c) was significantly different among the for-
est types (P < 0.0001). Hemlock had the highest %
C (26.46 � 0.40), followed by young birch
(23.54 � 0.33), then by mature birch (20.21 � 0.22).
A Tukey’s post hoc comparison revealed that hem-
lock was significantly different from young birch
(P < 0.0001) and mature birch (P < 0.0001), and
young birch and mature birch were significantly
different (P < 0.0001).

Volumetric water content
We measured VWC in conjunction with each

soil respiration measurement (Appendix S1:
Table S6, Fig. S2). A repeated measures ANOVA
revealed that mean VWC was significantly differ-
ent by forest type (P < 0.0001) during the 2015
growing season. Young birch consistently had the
highest soil moisture at each sampling date.
Mature birch plots were not added until 5 August
2015, but soil moisture values were similar to hem-
lock. Trends in the 2016 growing season were sub-
stantially different from those seen in 2015, and
data from the 2016 season differed significantly by
forest type (P < 0.0001) and date (P < 0.0001). Late
spring and early summer had ample rainfall, and
young birch had the highest soil moisture. Concur-
rently, mature birch and hemlock had very similar
soil moisture content. However, a widespread
drought developed during the 2016 growing sea-
son, which led to all forest types having exception-
ally low soil moisture during the peak of the
growing season. A slight increase in late summer
precipitation increased soil moisture conditions
and young birch resumed its trend of having the
highest soil moisture. The 2017 growing season
showed no significant differences.

Soil respiration rates and percentage of
differences in soil respiration
A repeated measures ANOVA was used to

analyze soil respiration for 2015, 2016, and 2017
(Appendix S1: Table S7). The analysis revealed
that soil respiration was significantly different by
a forest type and date interaction (P < 0.0001)
during the 2015 growing season (Fig. 5a). Over-
all, soil respiration rates for all forest types were
the lowest pre- and post-growing season. Hem-
lock and young birch had similar soil respiration
rates throughout the most active periods of the

Fig. 4. Mean %C (a), %N (b), and C:N (c) in the soil
organic layer of hemlock, young birch, and birch forest
types. Error bars are � 1 standard error. Letters desig-
nate forests that were significantly different via post
hoc Tukey’s honestly significant difference analysis.
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growing season. Relative to hemlock, young
birch had at >40% higher soil respiration at the
start of the growing season, but up to 30% lower
soil respiration during the fall (Fig. 5b). Mature
birch plots were not added until 5 August 2015,
but exhibited much higher soil respiration rates
at the peak of the growing season in 2016 and
2017. As the season progressed into the fall,
young birch and mature had a steeper decline in
respiration rates (�28% and �13%, respectively).

Soil respiration was significantly different only
by date (P < 0.0001) in the 2016 growing season
(Fig. 5a). During the 2016 growing season, soil
respiration closely tracked available soil mois-
ture, with the lowest rates observed during the
mid-season drought. Young birch and hemlock
forest types had very similar soil respiration rates
on a given sampling date. In fact, young birch
differed from hemlock within a 10% difference
until November (Fig. 5b).

Soil respiration rates during the 2017 growing
season were significantly different by date

(P < 0.0001) and the forest and date interaction
(P < 0.0001). Overall, the trends were similar for
the 2016 and 2017 growing season, with the low-
est rates for all forest types observed pre- and
post-growing season (Fig. 5a). Mature birch
always had the highest soil respiration rates,
reaching differences of as much as 60% greater
than hemlock rates during the middle of the
growing season in all years (Fig. 5b).

DISCUSSION

Hemlock forests serve a crucial role in the east-
ern United States due to their strong effects on
ecosystem characteristics, unique associations
with other organisms, and their function as a
sink for atmospheric CO2 (Hadley and Schedl-
bauer 2002, Snyder et al. 2002, Tingley et al.
2002, Ellison et al. 2005, Lovett et al. 2006, Zuk-
swert et al. 2014, Siddig et al. 2016). Based on
our comparisons of soil organic layer mass and
%C content between hemlock forest and mature

Fig. 5. Mean soil respiration rate (a; lmol CO2�m�2�s�1) and % soil respiration difference (b) for each forest
type over Julian day in 2015, 2016, and 2017. Error bars are � 1 standard error. Hemlock has yellow circles.
Young birch has blue triangles. Mature birch has red squares.
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birch stands, we estimate a 6.89 difference in the
C pool held in the forest floor (477.4 g C/m2 vs.
70.6 g C/m2), which suggests the potential for a
~4.5 ton C release per hectare if hemlock organic
layers decomposed and transitioned to a new,
lower equilibrium comparable to nearby mature
birch stands. While some of this release might be
offset initially by rapid C accumulation in the
growing biomass of young black birch trees, the
longer-term result appears likely to be a net
release of C because mature birch forests do not
maintain as large a pool of carbon in their soil
organic layer, and tree basal area (~biomass) of
mature stands between mature hemlock and
birch forest areas appears comparable. This sug-
gests the C lost from the hemlock soil organic
layer will not be entirely offset by a future C sink
in birch forest soils or above-ground biomass.

This novel finding is striking because previous
work has demonstrated impacts of hemlock loss
on decomposition and nitrogen cycling, but there
has been little evidence to date of these forests
becoming significant sources for atmospheric
CO2 (Orwig et al. 2013, Finzi et al. 2014). How-
ever, in this study, using a space-for-time substi-
tution approach, we demonstrate that major
changes in carbon cycling and soil carbon pools
are likely to develop as hemlock declines and are
replaced by deciduous tree species. These sub-
stantial differences emerge due to significant
decreases in soil organic layer mass and its C:N
between forests dominated by hemlock vs. decid-
uous tree species. These patterns were matched
by elevated soil respiration rates in mature birch
stands, consistent with higher decomposition and
more rapid C cycling. Taken together, these
results suggest great potential for shifting CO2

sink vs. source dynamics as eastern U.S. forests
lose this important foundation species.

Soil respiration
We found that soil respiration rates for mature

birch plots were consistently higher than the hem-
lock or young birch forest type throughout the
entire growing season for three consecutive years
(Fig. 5), a difference not seen in earlier studies. This
pattern was consistent during both an abnormally
dry year (2016; Appendix S1: Fig. S2b; 459.5 mm
of precipitation from April to October) and in years
characterized by more typical levels of precipita-
tion (2015, 2017; Appendix S1: Fig. S2a with

801.9 mm in April–October and Appendix S1:
Fig. S2c with 470.152 mm in April–August). In
contrast, Finzi et al. (2014) found similar soil respi-
ration rates in black birch stands (~135 yr old)
compared to second- and primary-growth hemlock
stands (132 and >230 yr old, respectively). Like-
wise, Orwig et al. (2013) removed and girdled
hemlock from experimental plots, and compared
these to deciduous forest plots, but found that vari-
ation in soil respiration was higher within treat-
ments and years than among treatments or years
(Orwig et al. 2013). Thus, they concluded that soil
respiration showed only modest and transient
responses to hemlock loss, giving rise to only small
impacts on ecosystem function.
Because of its effects on soil respiration, it is

important to note that the hemlock and mature
birch forest types in our study had similar VWC
(VWC %). These forest types differed from the
young birch stands, which maintained the highest
VWC throughout the entire season for all three
years (Appendix S1: Fig. S2). This is likely due to
the young birch stands having the lowest basal
area (Table 1) and least developed canopy, poten-
tially yielding greater throughfall and lower
evapotranspiration rates. Nevertheless, between
hemlock and mature birch stands of similar age
(~80–100 yr) on similar soils with comparable
VWC, we found large differences (up to 60%) in
soil respiration. Although predictable based on
leaf litter characteristics (e.g., %N, C:N) and the
observation that leaf litter inputs are almost com-
pletely degraded each year in mature birch forest
(i.e., thin, low mass organic layer), these striking
differences in soil respiration between forest types
have not been well documented in the past. This
may be due to previous studies sampling from
independent field sites of hemlocks and black
birch, while our study has the advantage of sam-
pling all forest types in close proximity to each
other on similar soils and topographic setting.
Overall, our results suggest more carbon being

released to the atmosphere from mature birch
forest soils, a trend that might be predicted to
emerge in current hemlock stands if these forests
lose hemlock and gain increased birch litter
inputs. Such a scenario might also be exacerbated
by the future mobilization of the large pool of
soil organic layer C currently stored in these
hemlock systems due to increased decomposi-
tion rates in the absence of hemlock.
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Soil organic layer characteristics
Substantial differences were evident in organic

layer characteristics between all forest types as
organic layer C:N decreased in the predicted pat-
tern (hemlock >young birch >mature birch;
Fig. 3c). Our results showed that %C of the soil
organic layer was the highest in hemlock soils,
but did not significantly differ from young birch
soil in %N. This is likely due to the close proxim-
ity of hemlock and young birch plots leading to
some levels of litter mixing, slowing predicted
shifts, while mature birch stands were almost
entirely free of hemlock needle inputs. This possi-
bility is supported by our leaf litter inputs results
demonstrating ~30% birch contribution in the lit-
ter of hemlock plots, and ~13% of hemlock contri-
bution of litter to nearby young birch plots
(compared to ~40% needles in hemlock plots;
Appendix S1: Fig. S1b). This finding underscores
that the young birch plots should likely be viewed
as an intermediate stage between hemlock vs.
birch dominance, but not a system where hem-
lock influence has been completely eliminated.
This situation might be most analogous to HWA-
affected areas where hemlock has declined, but
not been entirely lost, while birch importance has
begun to increase.

In contrast, mature birch soil organic layers,
where hemlock influence was almost entirely
absent, differed significantly from the hemlock
and young birch forest plots by having the lowest
%C. These results contradict previous research
conducted in central Massachusetts and south-
central Connecticut that showed no significant dif-
ference in organic layer %C between hemlock and
mature birch forest plots (~135 yr old; Raymer
et al. 2013). Our values for secondary hemlock for-
est organic layer %C are slightly lower than values
reported in Raymer et al. (2013) for primary hem-
lock forests and slightly higher than values
reported for secondary hemlock (43.80 � 1.25,
44.7 � 1.2 and 38.2 � 3.0, respectively), while our
values for mature birch %C are considerably lower
(32.63 � 1.30 vs. 38.2 � 3.0; Raymer et al. 2013).

Taken together, these results suggest an incre-
mental C:N decrease as hemlock forests transi-
tion to mature birch forest (Fig. 4c). The higher
C:N of hemlock soils likely traces to differences
in the chemical composition of hemlock vs. birch
litter entering the forest floor system. Our
results indicate that hemlock needles exhibit

significantly higher %C, lower %N, ultimately
yielding higher C:N ratios, and slower decompo-
sition (Fig. 2). Decomposition rates can also be
affected by secondary plant metabolites, like tan-
nins, which bind proteins and form organic com-
pounds resistant to further decay (Kraus et al.
2003). Tannins produced by hemlock have been
found to decrease N mineralization in soils with
elevated protein levels (Talbot and Finzi 2008).
As with other conifers, the high aluminum con-
tent of hemlock leaf litter may also be a con-
tributing factor, as high aluminum content is
correlated with slow decomposition, possibly
due to its influence on pH and stabilization of
soil organic matter, or directly due to the toxic
effects of aluminum (Al) on decomposers
(Hobbie et al. 2007).
Consistent with differences in organic layer

quality and decomposability, substantial differ-
ences were also evident in organic layer mass,
which decreased in the predicted pattern (hem-
lock >young birch >mature birch; Fig. 3). Gener-
ally, the leaf litter deposited in black birch stands
is expected to decompose significantly faster
than that of hemlock-dominated stands due to its
higher quality for decomposers (Cobb 2010). The
lower C:N ratios of black birch leaves compared
to hemlock needles, in combination with the fact
that hemlock needles contain higher concentra-
tions of lignin and polyphenolic compounds, are
consistent with the finding that hemlock stands
developed significantly greater organic layer
mass. These results are also consistent with the
findings of previous studies of soil organic layer
C:N under hemlock canopies and organic layer
depth (Finzi et al. 1998, Zukswert et al. 2014).
A contributing factor to black birch’s higher

decomposition rates and lower organic layer
mass may be birch species’ high leaf litter nitro-
gen concentrations (Cobb 2010). The residual
effects of hemlock on nutrient dynamics such as
N cycling may also take time to dissipate in the
young birch plots, or might be delayed by inputs
from nearby hemlock trees, as was the case in
our young birch plots (Zukswert et al. 2014).
Once these effects dissipate, the more dramatic
nutrient differences seen between hemlock and
mature birch may become even more evident in
the forest floor. The significantly lower mean
organic layer mass and C:N of mature birch for-
est compared to both the hemlock and young
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birch forest types suggest that the ecosystem
changes due to hemlock decline will increase and
persist over time. Notably, we also do not see evi-
dence that the decline in organic layer mass is
due to a transfer in organic C to the lower, min-
eral soil layers: Exploratory tests in the hemlock
and mature birch plots show no significant dif-
ferences in organic matter content of the A hori-
zon between forest types (20.2% vs. 18.7%,
respectively; J. Bellemare, unpublished data).

More persistent soil organic carbon, such as
that which likely comprises much of the deep
organic layer of hemlock forests, is primarily
recalcitrant humic compounds (formed by detri-
tivores consuming other carbon compounds)
and, to a lesser extent, plant structural and sec-
ondary compounds (Allison 2006). Soils with
higher levels of fungal- relative to bacterial activ-
ity have been found to exhibit significantly
higher total soil carbon content, and organic
compounds derived from fungal decomposition
play a large role in organic matter accumulation
in other conifer-dominated ecosystems, such as
boreal forests (Bailey et al. 2002, Clemmensen
et al. 2013). This suggests that differing levels
and types of microbial activity (e.g., fungal vs.
bacterial decomposers) may play a role in driv-
ing differential organic layer accumulation in
hemlock vs. birch forest types.

The dramatic differences in soil carbon pools
that we observed between hemlock vs. birch for-
ests may be partially offset in the initial decades of
hemlock decline by uptake to new tree tissue (e.g.,
wood or other plant biomass). Some work has
suggested that an initial decrease in carbon uptake
by eastern U.S. forests is likely with the spread of
HWA, but these effects were not predicted to be
long-lasting or to significantly compromise regio-
nal uptake (Albani et al. 2010). Rather than
permanently decreasing forest carbon storage,
HWA-induced hemlock decline has been pre-
dicted to alter the distribution of carbon among
the various forest pools (Raymer et al. 2013). For
example, rapid growth of young black birch might
result in an expansion of the live biomass carbon
pool and an ecosystem C content equal to sec-
ondary growth hemlock in ~20 yr (Raymer et al.
2013). However, our results suggest that the role
of soil organic carbon loss in these dynamics
might be underestimated or overlooked. Although
the above-ground C loss triggered by dying

hemlocks might eventually be offset by the birch
trees that typically replace them, this dynamic
does not account for the dramatic changes in the
pool of soil organic layer C likely to be mobilized
by decomposition as these forest ecosystems tran-
sition from hemlock to birch dominance. Conse-
quently, the C release driven by increased
decomposition in the forest floor is likely to be
substantial, and it might never be fully offset by
growth of above-ground biomass, resulting in a
substantial net release of C from these ecosystems.
In this regard, further work integrating measure-
ments of soil and biomass C pools between hem-
lock and birch forests is needed.

CONCLUSIONS

The loss of eastern hemlock, an important
foundation tree species, is likely to have broad
impacts on overall ecosystem function due to its
effects on processes such as decomposition,
nutrient cycling, and carbon sequestration (Elli-
son et al. 2005). Additionally, these effects are
likely to be extensive and long-lasting as these
ecosystems are converted to deciduous forest fol-
lowing hemlock decline. While previous work
has documented substantial changes in decom-
position and nitrogen cycling with the loss of
hemlock (Jenkins et al. 1999, Orwig et al. 2002,
2013, Cobb 2010, Finzi et al. 2014), a consensus
has yet to emerge on the magnitude and longev-
ity of carbon flux impacts. Our findings suggest
these changes could be substantial and conse-
quential, as we found dramatic increases in soil
respiration and significant declines in soil carbon
pools when comparing hemlock forests to
mature birch forests. The full extent of these
impacts on carbon sequestration may take sev-
eral decades to manifest, but our results suggest
that the loss of hemlocks will have substantial
long-term impacts on forest ecosystem structure,
function, and carbon pools.
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